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Summary  

This Application Note describes the automated PDL (Polarization Dependent Loss) measurement of a 
passive optical DUT (Device Under Test) with direct EPS1000 register access via USB or SPI. Two 
measurement techniques are covered that do not need an external polarimeter. Unless the EPS1000 
scrambler is equipped with the optional internal power meter, an external power meter is required. 
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Available PDL measurement techniques 
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Fig. 1: Setup for PDL measurement with EPS1000 scrambler. The optional power meter input is shown 
as RX port. The scrambler output is directly connected to a power meter for a subsequent reference 
measurement. 

Extinction method: 
A power meter behind a device under test (DUT) can be utilized to drive a polarization scrambler/ 
transformer in front of the DUT into the states where minimum and maximum transmissions are 
reached. From minimum and maximum transmission, polarization dependent loss (PDL) can be 
calculated. This method is referred to as the extinction method.  
 
Scrambling method: 
With a Novoptel EPS1000 polarization scrambler/transformer, one can generate polarization states 
that are equidistributed on the Poincaré sphere. This scrambling method as described in [1] allows 
measuring especially small PDL with higher accuracy. Because the power samples have to be strictly 
synchronous to the polarization states alignment, this method requires an EPS1000 model with optical, 
low-PDL receiver input, e.g. part number EPS1000-10M-XL-S-AA-O-D.  
 
Removing scrambler PDL: 
PDL of the scrambler will be superimposed to the PDL of the DUT. To get more precise results, we 
propose to repeat the measurement while output and RX port of the EPS1000 are connected with a 
patch cord. The samples in the reference measurement should be taken at the same SOPs (States of 
Polarization) behind the scrambler as in the DUT measurement because this allows removing the 
scrambler PDL from the DUT PDL mathematically. So, the EPS1000 should be configured to provide 
the same polarization transformations in both measurements, and the input polarization of the 
EPS1000 should be fixed. This can be done with both the extinction and the scrambling method. 
 
With the optional optical receiver input, both the extinction and the scrambling method including the 
reference measurements are supported by the Novoptel GUI as described in the EPS1000 User 
Guide. The following descriptions shall improve understanding of the involved EPS1000 control 
registers to enable automated PDL measurement from any platform. Suitable Matlab code is provided. 
It can be treated as pseudo code and translated into other languages, e.g. Python or Labview. 

Dark Current Measurement 

Both methods require knowledge of the dark current, i.e. the ADC value at zero optical input power. To 
get a most accurate measure of the dark current, it is useful to increase the averaging time for this 
ADC sample. The averaging time is T = 80 ns • 2ATE, where ATE is the Averaging Time Exponent 
(ATE) as described in the EPS1000 User Guide.  
 
Two basic communication functions are used for USB transfer to and from a connected EPS1000: 
writeusb(x, y) will write a value y into register x, and readusb(z) returns the data contained 
in register z. For details of this functions please refer to the EPC1000 or EPS1000 User Guide. The 
code can be transferred into any language that allows data transfer using the FTDI USB driver.The 
new ATE value is set in Matlab by 
 
writeusb(129, ATE); 

 
Sometimes it is useful to read not only the current intensity sample but also the fractional part of the 
averaged value. To get both, the Matlab code is:  
 
dc = readusb(128) + readusb(133)/2^16; 
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Any read of register 128 will freeze the fractional part in register 133. Hence it is important to read 
register 128 before register 133 to get integer and correct fractional part of the same sample.  
 

Extinction method 

The extinction method algorithm has two basic elements: One is to read the current optical power. This 
can be done as described in the previous section. The other is the modification of the scrambler’s 
polarization transformation. For this purpose, all 16 electrode voltages of the polarization transformer 
can be accessed through the USB/SPI registers. The command 
 
writeusb(50+isect-1, 8192+dacvalue); 
 

writes the value dacvalue plus an offset of 8192 in the DAC of electrode number isect. The value 
dacvalue is limited to ±6000 for all electrodes, which corresponds to ±45 Volt. The algorithm must 
modulate the electrode voltages, read the optical power and adjust the current working point until the 
global transmission minimum or maximum is reached. 
 
For the reference measurement, the voltage sets for minimum and maximum transmission should be 
saved. With a patch cord instead of the DUT, the same two voltage sets can be applied to measure the 
scrambler PDL influence on the measured DUT PDL. Between and during DUT and reference 
measurement, the input polarization to the EPS1000 must be stable. 
 
The PDL value in dB is calculated by  
 
PDL_dB = 10*log10(I_max / I_min) 
 

where I_max and I_min are the (averaged) ADC samples at maximum and minimum transmission. 
From both values, the dark current value has been subtracted previously. 
 

Scrambling method 

Synchronous / Triggered Waveplate Rotations 

For this method, the goal is to generate a reproducible set of polarization states that are equally 
distributed over the Poincaré sphere. During polarization scrambling, this is obtained by endlessly 
rotating waveplates. In contrast to the normal scrambling mode, we use a trigger here to keep the 
electrode voltages fixed during the sampling time. This is what we call a synchronous or triggered 
waveplate rotation. In this mode, the generated polarization states are reproducible if  
 

a) the waveplates rotate with the same speeds and start at the same predefined orientations, 

b) the same internal (synchronous) trigger is used and 

c) the scrambler’s input polarization does not change between two measurements. 

This technique does not require predefined execution tables, thus allowing to use a maximum of 216  
measurement positions when the internal sampling memory is used. 

Configuration from Matlab 

When controlling the EPS1000 from Matlab, the synchronous / triggered waveplate rotations can be 
configured by the following code.  

    
      writeusb(126, 0); % Use only Photodetector 1 
      writeusb(229, 0); % Disable Synchronous Table Execution 
      writeusb(224, 0); % Disable Ext Trigger 
      writeusb(220, 0); % Disable Continuous Table Execution 
      writeusb(225, 0); % Disable ATE Trigger; Disable INT Trigger 
      writeusb(132, 1); % Enable Timed Output 
      writeusb(129, ATE); % ATE=11: averaging over 2^11 samples * 80 ns = 163.84 us 
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      writeusb(137, ATE+1); % Sample recording trigger is 2^(11+1) * 80 ns= 327.68 us 
      writeusb(134, 2^15-1); % max. memory address: 2^16-1 
      writeusb(136, 0); % any delay in multiples of 20 ns 
      writeusb(140, 0); % any delay in multiples of the waveplate trigger period 
      writeusb(141, 0); % 0/1/2/3: 1/2/4/8 samples stored per waveplate position 
 

If the DUT induces a long signal delay, this delay can be taken into account by using the delay 
registers 136 (multiples of 20 ns) and 140 (multiples of the sample recording trigger period). If the DUT 
delay is unknown but less than a trigger period, 2, 4 or 8 samples can be stored per waveplate position 
by writing 1,2 or 3 to the oversampling register 141. The collected data can then be split to 2,4 or 8 
measurements with different delays each. Since a wrong delay leads to a lower calculated PDL value, 
the measurement with the highest PDL value has to be chosen. 
 
During the measurement process, the scrambler will fill the sampling memory from address 0 up to the 
address defined in the memory address register 134. The maximum possible value for this register is 
216-1. 
 
Register 129 defines the averaging time exponent (ATE) of the ADC sampling. The averaging time is 
2ATE * 80 ns, which leads to an averaging time of 163.84 µs at ATE=11. With the delay register 136 set 
to 0, the setting of a new waveplate position and the writing of an averaged ADC sample occur 
simultaneously. Thereby, the averaged ADC value for the old waveplate position is stored. The 
waveplate trigger period register (137) is programmed the same way as the ATE register. Normally, the 
waveplate trigger period should be twice the averaging time. This way, only samples in the second half 
of the waveplate trigger period contribute to the averaged value, which increases accuracy. This is 
achieved by writing “ATE+1” to register 137.  

 

Waveplate Turns Steps  Start at  
QWP0 22 213 1/48 
QWP1 26 29 3/48 
QWP2 210 25 5/48 
HWP 212 23 0 

QWP3 28 27 7/48 
QWP4 24 211 9/48 
QWP5 20 215 11/48 

Table. 1: Electrooptic waveplate turns and steps in each measurement with 215 samples, and exemplary starting positions. The 

inverse of the value “Steps” is used for waveplate speed setting. 

The initial positions of the waveplates may help to randomize polarizations. They are defined and 
applied to the EPS1000: 
       
      QWP0position = round( 1/48 * 2^16); 
      QWP1position = round( 3/48 * 2^16); 
      QWP2position = round( 5/48 * 2^16); 
      HWPposition  = round( 0/48 * 2^16); 
      QWP3position = round( 7/48 * 2^16); 
      QWP4position = round( 9/48 * 2^16); 
      QWP5position = round(11/48 * 2^16); 
    
      writeusb(40, HWPposition); 
      writeusb(41, QWP0position); 
      writeusb(42, QWP1position); 
      writeusb(43, QWP2position); 
      writeusb(44, QWP3position); 
      writeusb(45, QWP4position); 
      writeusb(46, QWP5position); 

 
The waveplate rotation speeds have to be set individually. We project a measurement of 2^15 samples 
and request that all waveplates perform integer numbers of rotations during the measurement, while 
the generated polarizations are as randomly distributed on the Poincaré sphere as possible. Starting 
from different QWP and HWP orientations (see above) all combinations of 4 equispaced QWP 
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orientations and 8 equispaced HWP orientations ( 32768484 33  ) are applied in our example. See 
also Table 1. 
       
      QWP0speed = round(  2*pi / 2^13/ (2*2^ATE*80e-9) * 100); 
      QWP1speed = round(  2*pi / 2^9 / (2*2^ATE*80e-9) * 100); 
      QWP2speed = round(  2*pi / 2^5 / (2*2^ATE*80e-9) * 100); 
      HWPspeed  = round(2*2*pi / 2^3 / (2*2^ATE*80e-9) * 100 / 1000); 
      QWP3speed = round(  2*pi / 2^7 / (2*2^ATE*80e-9) * 100); 
      QWP4speed = round(  2*pi / 2^11/ (2*2^ATE*80e-9) * 100); 
      QWP5speed = round(  2*pi / 2^15/ (2*2^ATE*80e-9) * 100); 
 
      writeusb(9, mod(HWPspeed, 2^16)); 
      writeusb(10, bitshift(HWPspeed, -16)); 
      writeusb(11, mod(QWP0speed, 2^16)); 
      writeusb(12, bitshift(QWP0speed, -16)); 
      writeusb(13, mod(QWP1speed, 2^16)); 
      writeusb(14, bitshift(QWP1speed, -16)); 
      writeusb(15, mod(QWP2speed, 2^16)); 
      writeusb(16, bitshift(QWP2speed, -16)); 
      writeusb(17, mod(QWP3speed, 2^16)); 
      writeusb(18, bitshift(QWP3speed, -16)); 
      writeusb(19, mod(QWP4speed, 2^16)); 
      writeusb(20, bitshift(QWP4speed, -16)); 
      writeusb(21, mod(QWP5speed, 2^16)); 
      writeusb(22, bitshift(QWP5speed, -16)); 

 
If the scrambler has a firmware 1.0.6.0 or later, the rotation speeds can alternatively be given by 
rotations per 10.7 s instead of rad/s, which is more accurate. 10.7 s is the measurement time when 
recording 215 samples at 327.68 µs per sample. If a smaller memory size or a lower ATE is selected, 
the following values would have to be increased to ensure integer numbers of rotations within the 
measurement time. 
       
      writeusb(150, 1); % define rotations per 10.7 s instead of rad/s 
      writeusb(151, 4096); 
      writeusb(152,    4); 
      writeusb(153,   64); 
      writeusb(154, 1024); 
      writeusb(155,  256); 
      writeusb(156,   16); 
      writeusb(157,    1); 

The rotations have to be configured. We choose the forward direction: 
       
    %enable and set forward direction 
      writeusb(0, 1); % HWP: 
      writeusb(1, 1); % QWP0: 
      writeusb(2, 1); % QWP1: 
      writeusb(3, 1); % QWP2: 
      writeusb(4, 1); % QWP3: 
      writeusb(5, 1); % QWP4: 
      writeusb(6, 1); % QWP5: 

After the configuration described above, a measurement can be started by the command 
       
    writeusb(225, 2); % Enable ATE Trigger; Disable INT Trigger 

 
Register 135 contains the current memory address (Bits 0 to 15). It can be read to observe the 
measurement process. If the maximum address 216-1 is used, also Bit 16 of the memory address (Bit 0 
of register 139) has to be observed because after writing to address 216-1, the counter will stop at 
address 216. Once the address has reached the defined maximum address plus 1, the trigger can be 
disabled by writing “0” to register 225. Disabling the trigger will reset the address counter. 
 

Synchronous / Triggered Table Execution 

The requirement of equidistribution on the Poincaré sphere can not only be met with rotating 
waveplates, but also with a limited number of predefined polarization state sequences. Examples for 
such sequences are the corners of diamonds, cubes and other polyhedrons, which can be stored in 
and executed from a table. However, a polarimeter is needed to find these polarization states by 
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suitable voltage settings of the EPS1000. The synchronous / triggered table execution is also useful for 
various other applications such as recirculating-loop experiments.  
The internal execution table (= Table) stores all 7 waveplate positions and all 16 electrode voltages for 
each of up to 1024 settings (= Current Table Position). Electrode voltage settings are modified 
appropriately upon waveplate position setting by the user, but not the other way round. During table 
execution only the electrode voltage settings matter and the (also stored) waveplate positions are 
irrelevant. This makes sense, given that electrode voltage settings generally produce waveplates other 
than quarter- or halfwave ones, i.e. with other retardations. Waveplate position setting is still useful for 
initial table generation. But a Table can be generated just as well by electrode voltage settings. 
Nevertheless, the waveplate positions will always be kept as a part of the Table to ease a later 
interpretation of the polarization transformations. 
 
Samples of the optical power can be taken at the end (= after application) of each table step. This can 
be done externally, preferably timed with the trigger input or output. When an optical receiver input is 
provided by the EPS1000 model, samples of the detector are taken and stored directly before the next 
table step is executed. The averaging time for these measurements is given by T = 80 ns • 2ATE, where 
ATE is the Averaging Time Exponent (ATE) that can be set in the GUI or by writing to register 129. The 
internal memory for measurement data can store all 1024 samples, e.g. for a complete table execution. 

 

Creating tables using text files and GUI 

 
Each row of the text file corresponds to one polarization transformation setting. Rows are strings 
containing 24 integers, separated by commas. The first 7 integers are the waveplate positions in 
sequence QWP0, QWP1, QWP2, HWP, QWP3, QWP4 and QWP5. The positions are given as a 
rotation variable in the unit interval (0, <1), where 1 would mean a full waveplate rotation (by 360° 
electronically or 180° for an equivalent physical waveplate), multiplied by 216 and rounded to the 
nearest integer.  
 
The next 16 integers in the row define the electrode voltages. An offset of 8192 corresponds to 0 Volt, 
the upper and lower limitations of 8192±6000 correspond to ±45 Volt. The first two elements 
correspond to electrodes 1 and 2 of the first of eight sections of the LiNbO3 polarization transformer. 
Elements 3 and 4 correspond to electrodes 1 and 2 of the second section and so on.  
 
The last integer in the row defines the dwell time (= subsequent delay) in nanoseconds. The dwell time 
must be a multiple of 40 ns. Minimum dwell time is 200 ns. Note that dwell times must be longer than 
the averaging time of the measurement!  
 

Creating Tables using Matlab 

 
The following Matlab code generates an execution table and stores it in the EPS1000. 
 
In the example, 1000 times 7 waveplate positions are generated and sent to registers 40 to 46. 
Because we want to read the applied electrode voltages afterwards, the EPS1000 table execution 
mode (register 229) has to be disabled. This allows the current waveplate positions to be defined by 
registers 40 to 46, not by the table memory. The waveplate positions are additionally written to the 
execution table memory registers 230 to 236, and the step address 0 to 999 (for the 1000 positions in 
our example) is written to register 219. The current electrode voltages are read from registers 50 to 65 
and written into the table memory registers 250 to 265. A short pause before the read operation 
ensures that the registers are set to the desired waveplate position. The lower 16 bits of the execution 
time are written into register 237, the upper 16 bits into register 238. Upon a memory write trigger (“1” 
and “0” to register 221), the table entry is stored at the given address. The actual table length is 
defined in register 228. 
 
Matlab Code: 
 
   writeusb(229, 0); % Disable Table Execution Mode 
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   for ii=1:1000; % number of WP positions, 
 
      % calculate new WP positions 
      QWP0Position=round(mod(ii/1024*  11.34, 1)*2^16); 
      QWP1Position=round(mod(ii/1024*   2.73, 1)*2^16); 
      QWP2Position=round(mod(ii/1024*   5.19, 1)*2^16); 
      HWPPosition =round(mod(ii/1024* 37.247, 1)*2^16); 
      QWP3Position=round(mod(ii/1024*  13.11, 1)*2^16); 
      QWP4Position=round(mod(ii/1024*   7.28, 1)*2^16); 
      QWP5Position=round(mod(ii/1024*   4.14, 1)*2^16); 
       
      % set all WPs to desired position 
      writeusb(41, QWP0Position); 
      writeusb(42, QWP1Position); 
      writeusb(43, QWP2Position); 
      writeusb(44, QWP3Position); 
      writeusb(45, QWP4Position); 
      writeusb(46, QWP5Position); 
      writeusb(40, HWPPosition); 
       
      if 1 % store current position in EPS table 
          
         writeusb(219, ii-1); 
         writeusb(230, QWP0Position); 
         writeusb(231, QWP1Position); 
         writeusb(232, QWP2Position); 
         writeusb(233, HWPPosition); 
         writeusb(234, QWP3Position); 
         writeusb(235, QWP4Position); 
         writeusb(236, QWP5Position); 
 
         pause(.1); 
                    
         for iii=0:15 % store current electrode voltages in table 
            writeusb(250+iii, readusb(50+iii)); 
         end; 
          
         % Delay time between positions: 
         % 2^17 * 20 ns = 5.24 ms 
         Execution_Time=2^17; 
         writeusb(237, mod(Execution_Time, 2^16)); % lower 16 Bits 
         writeusb(238, bitshift(Execution_Time, -16)); % upper 16 Bits 
          
         % Table write trigger 
         writeusb(221, 1); 
         writeusb(221, 0); 
          
         % set new table length 
         writeusb(228, ii); 
      end; 
 
   end; 

 
 

Table execution 

 
The table stored in the EPS1000 can be executed by a USB or SPI command (writing “0” to register 
227), by an external trigger signal or by the Windows GUI.  

 
Calculating the PDL 

After the measurement process, the collected data can be loaded from the EPS1000. For that purpose, 
each memory address has to be written into register 130, and the value stored at that address can be 
read from register 131. The EPS1000 supports a burst transfer mode, in which data from subsequent 
memory addresses can be transferred at once. The burst transfer Matlab program (available from 
Novoptel) can be used to transfer the whole sample memory between 0 and maxaddr (i.e., maxaddr+1 
samples) with a single program call: 
      Iref = readburstusb(130, 0, maxaddr, 131); 
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From the measurement data, the PDL and mean and minimum loss in dB are calculated by 

 
      I = Imeas./Iref; 
      meanloss_dB = 10*log10(mean(I)); 
      minloss_dB = 10*log10( (mean(Imeas) + sqrt(3)*std(Imeas) ) / mean(Iref) ); 
    
      th = sqrt(3)*std(I/mean(I)); 
      th = min(th,0.999999999999); % limit, to avoid numerical overflow of atanh and log10 
      PDL_dB = 10*log10((1+th)/(1-th)); % or alternatively: PDL_dB=log10(exp(1))*20*atanh(th); 

 
where Imeas and Iref are vectors that contain the measurements samples with and without DUT. From 
all samples in each measurement, the dark current offset has been subtracted previously. 
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