
Novoptel Matlab Communication, rev. 1.0.1

Novoptel 1 of 2

Operation of the instrument via USB using Matlab®

The USB driver (CDM21228_Setup.exe for instruments with black USB 2.0 socket,
FTD3XXDriver_WHQLCertified_v1.3.0.4_Installer.exe for instruments with blue USB
3.0 socket) has to be installed on your Windows system and the Novoptel instrument
needs to be connected using a USB cable. Examples of Matlab communication
scripts are included in Matlab_USB_Support_Files.zip, which can be downloaded
from https://www.novoptel.de/Home/Downloads_en.php and
https://www.novoptel.eu/Home/Downloads_en.php.

Access the USB driver

Novoptel provides precompiled MEX files for basic read and write functions. Detailed
information about the driver are available at https://www.ftdichip.com/FTSupport.htm.

USB Settings

The following settings have to be applied to enable USB 2.0 communication. They
will be applied automatically if you use the example communication scripts.

Baud Rate 230400 baud
Word Length 8 Bits
Stop Bits 1 Bit
Parity: 0 Bit

To speed up sequential read and write operations, we recommend to set the USB
Latency Timer to 2 ms.

Example communication scripts

The following four MEX file examples allow basic communication with a Novoptel
instrument:

- ft2init.mexw64
- ft2read.mexw64
- ft2write.mexw64
- ft2close.mexw64

For devices with USB 3.0 interface, the MEX files start with “ft3”.

The MEX files are accessed by the basic instrument classes, for example
EPS1000.m and PM1000.m

To expand the communication to more than one instrument of the same type, the
class file has to be copied and renamed. Additionally, the name of the last device file
name (“LastDevEPS.mat”) and the name of the handle (“EPSHandle”) have to be
changed inside the class.

Example: Copy and rename EPS1000.m to get the additional file EPS1000_2.m. In
EPS1000_2.m, change the last device file name to “LastDevEPS2.mat” and rename
the handle to EPS2Handle. Now, both instruments can be kept connected at the
same time and read and written to individually.

The usage of the classes is described in the following:

https://www.novoptel.de/Home/Downloads_en.php
https://www.novoptel.eu/Home/Downloads_en.php
https://www.ftdichip.com/FTSupport.htm

Novoptel Matlab Communication, rev. 1.0.1

Novoptel 2 of 2

EPS1000.init (calls ft2init.mexw64):
This command has to be called before the first write or read attempt. When running
the first time, a list of devices is presented, from which the user can select the
desired one. After that, the command will always connect to this device if it is
detected. To select another device later, call the script with argument “(0)”.

EPS1000.read (calls ft2read.mexw64):
Reads a value from a given register.

Example: res=EPS1000.read(addr)

EPS1000.write (calls ft2read.mexw64):
Writes a given value into a given register.

Example: ok=EPS1000.write(addr, data)

EPS1000.close (calls ft2close.mexw64):
Once an EPS1000 is allocated by Matlab, it cannot be accessed by other programs,
e.g. Novoptel's GUI, until it is deallocated by calling the command EPS1000.close.

Burst transfer example

To increase transfer speed, consecutive addresses of an internal memory can be
transferred at once in burst mode.

EPS1000.readburst (calls ft2readburst.mexw64 or ft3readburst.mexw64):

Example: res = EPS1000.readburst(addr, start, stop, read)
The parameter addr defines the address register to be incremented during burst

transfer, start (stop) defines the minimum (maximum) address and read defines

the register that contains the data to be sent.

