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Abstract—Progress toward 40-Gb/s polarization-mode disper-
sion (PMD) compensation is presented in several areas. A single-
waveplate polarization scrambler that generates Stokes’ parame-
ters with just three harmonics has been realized. Together with an
arrival-time detection scheme, it allows the detection of about 1 ps
of PMD within 2.4 s in a 40-Gb/s nonreturn-to-zero transmission
setup. A scrambler that operates independent of its input polariza-
tion has also been realized. Both scramblers can be shared among
a number of wavelength-division-multiplexed (WDM) channels for
which PMD is to be detected. Furthermore, an inverse scattering
technique has been implemented to determine differential group-
delay profiles of an improved distributed PMD compensator in

-cut, -propagation LiNbO�. In this context, the most common
kind of higher order PMD is identified, which typically persists
after compensation of first-order PMD. In a fiber link with polar-
ization scrambling, it is shown to be measurable in a most efficient
manner by comparing the rising and falling slopes of the detected
signal using two oppositely poled one-way rectifiers placed at the
output of a differentiator.

Index Terms—Optical fiber communication, optical fiber polar-
ization, polarization-mode dispersion (PMD).

I. INTRODUCTION

POLARIZATION-MODE dispersion (PMD) continues to
impair high-data-rate optical communication. Polarization

scrambling facilitates first-order PMD detection [1]–[6] and
has the potential of replacing spectral analysis of the detected
base-band signal, in particular when it is combined with arrival
time detection [1], [3], [6], which needs no extra optics in
the receiver. Since the recovered clock phase automatically
tracks the signal arrival time, it is sufficient to integrate the
voltage-controlled oscillator input signal to obtain a measure of
the arrival time variations and, hence, of PMD. Section II deals
with the optimization of electrooptic polarization scramblers,
including a version that operates independently of its input
polarization and can most easily be shared among many
wavelength channels.

The business case for 10-Gb/s PMD compensators (PMDCs)
is relatively weak, because the substantial cost of one or more
LiNbO components must be justified in comparison with per-
formance and cost of a regenerator. At 40 Gb/s, the situation
is a lot more favorable: Regenerator cost is higher, more PMD
needs to be compensated relative to the bit duration, and higher
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order PMD compensation is, therefore, also much more impor-
tant. However, first- and higher order PMD can be compensated
in a single distributed PMDC in -cut, -propagation LiNbO
[7], which we believe is the key to a cost-effective PMD com-
pensation and merits further attention.

In Section III, the implementation of a proposed inverse
scattering technique [8], [9] is being reported, and differential
group-delay profiles are generated. In Section IV, that technique
is applied to an improved version of the distributed PMDC [7]
in order to investigate its compensation capabilities.

No compensation is possible without detection. Higher order
PMD, which may persist after complete compensation of first-
order PMD, is fairly difficult to detect, at least if low cost, high
accuracy and short measurement intervals are desired. A solu-
tion is proposed in Section V. We describe how the most impor-
tant kind or combination of higher order PMD can be measured
in the electrical domain by slope difference detection, more sen-
sitively than by simple spectral analysis or vertical eye-opening
detection.

The subsequently described scramblers, distributed PMDC,
and higher order PMD detection have not yet been combined
into a 40-Gb/s PMD compensation system. We believe, how-
ever, that these progressive steps and arrival time detection of
PMD will significantly increase performance and reduce the
cost of a PMD compensation system when they are put together.
The simple block diagram of Fig. 1 shows how the various en-
abling technologies could be combined for PMD compensation.
The boldface boxes are dealt with in this paper. In a subsequent
paper, we will describe how a larger number of voltages can be
controlled efficiently in a distributed PMDC. A good starting
point is certainly provided by the very sensitive arrival time de-
tection of first-order PMD and the proposed slope difference
detection.

.

II. OPTIMIZED POLARIZATION SCRAMBLERS

A. Single-Waveplate Scrambler for Circular Input Polarization

A variety of first-order PMD detection techniques [1]–[6]
need polarization scramblers. Among these, we consider arrival
time detection [1], [3], [6] to be most advantageous. In this sec-
tion, we optimize such scramblers. It should be mentioned that
scramblers must meet certain optical input power specifications
if they are to scramble many wavelength channels simultane-
ously.

Now we shall derive the electrooptical requirements to be
fulfilled by a polarization scrambler. Let the time-variable
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Fig. 1. Perspective showing how various enabling techniques should be combined for optical PMD compensation. TX � transmitters; � MUX/DEMUX �
wavelength-division (de)multiplexer; VCO � voltage-controlled oscillator; PI � proportional-integral controller of clock recovery PLL; and rms � root mean
square.

scrambler output polarization and a principal state-of-polariza-
tion (PSP) of a subsequent fiber be denoted by the normalized
Stokes’ vectors and , respectively. For a differen-
tial group delay (DGD) , the pulse arrival time is

(1)

where denotes transposition. We drop the time ( ) dependence
and introduce the averaging operator . The variance of

(2)

depends on the covariance matrix

(3)

of the scrambler output polarization. To maximize for all
, the minimum eigenvalue of the positive semidefinite

matrix must be maximized. In the optimum case, the average
vanishes, and becomes and equals

times the identity matrix 1. Obviously, its three eigenvalues are
all equal to . One possible solution to achieve is
an equidistribution of on the Poincaré sphere. However,
the corresponding scrambling period would be very long. In a
receiver with arrival time detection, the arrival time fluctuations
have to be measured over an integer number of scrambling
periods or over a very long time. This guarantees a stable
first-order PMD readout. A short measurement interval, equal
to one scrambling period, is desirable in order to allow fast
PMD detection. Harmonic signals are best suited to keep the
scrambling period small, and they will result in , describing
a closed line on the Poincaré sphere.

We shall use only a single electrooptic waveplate in X-cut,
Z-propagation LiNbO [11] to implement such scramblers.
These scramblers are particularly useful if all WDM channels

have equal polarizations, or if channels with like and orthogonal
polarizations are interleaved in the frequency domain. Circular
input polarization is required. A quarter-wave plate on the
same chip can be used to convert horizontal/vertical linear
polarizations into the right/left circular polarizations needed
for scrambling.

In the scrambler, a TE-TM phase shift angle and a
TE-TM mode conversion angle are applied together to
produce a retardation between linearly
polarized eigenmodes having the normalized Stokes vectors

. Such
a device is called a Soleil–Babinet compensator (SBC). The
orientation angle on the equator of the Poincaré sphere is
twice the physical azimuth angle of an eigenmode. In the
normalized Stokes space the output vector is obtained by
rotating the circular input polarization vector
by the retardation angle about the eigenmode axis. Math-
ematically, this is given by (4), shown at the bottom of the
page, where the matrix describes the rotation. The rotation
matrix is equal to what will subsequently be abbreviated as
SBC . More details regarding retarders can be found in
[7]. One possible attempt to fulfill the condition
is the following: The device is driven by voltages having as
few harmonics as possible, in order to simplify driving. Two
harmonics numerically optimized in phase ( ) and
quadrature ( ) amplitudes of both and are
sufficient to very nearly fulfill the condition . The
ratio of the highest needed driving frequency divided by the
fundamental scrambling frequency should be kept as low as
possible to make scrambling fast, while keeping the harmonics
content of the generated Stokes vector components low. This
goal is reached by choosing the first and the second harmonic.
The numerically optimized solution is

(5)

(4)
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Fig. 2. Experimental setup for scrambler characterization.

where either the upper or the lower signs have to be chosen. Both
generate patterns with a 120 rotation symmetry about the
circular ( ) axis of the Poincaré sphere [12].

A second, and better, attempt to achieve consists in
narrowing the spectral content of the Stokes parameters. A low
harmonic number of the Stokes parameters is desirable, because
it makes it easier for the receiver (RX) clock recovery to track
the arrival time variations. This is important to avoid a scram-
bler-induced PMD penalty. It also enables the choice of a high

, which means that the time interval necessary for PMD detec-
tion becomes short. A suitable output polarization trajectory is

(6)
where, again, either all upper or all lower signs have to be
chosen. The corresponding retardations can be obtained by
inverting the three scalar equations contained in (4): Using the
required overall retardation

(7)

of the waveplate for circular input polarization and the eigen-
mode orientation angle

(8)

we calculate the phase-shifting and mode conversion retarda-
tions

(9)

From (6), we insert the Stokes parameters using the upper
signs to implement what may be called a “tennis ball” scram-
bler. It has been implemented and characterized more closely in
the setup of Fig. 2. An extra waveplate was used to generate cir-
cular input polarization for the scrambler waveplate. Both elec-
trooptic waveplates were part of a commercially available in-
tegrated polarization transformer. A polarimeter was connected
to the device output. The resulting Poincaré sphere trace was
recorded with a scrambling period of 1 s for demonstration
purposes (Fig. 3). It looks like the vulcanization line between the
two halves of a tennis ball. In Fig. 3, the Stokes parameter axes
are oriented as expected from theory, but in reality, there was an
unspecified polarization transformation between scrambler and
polarimeter. The eigenvalues of turned out to be very close to
the ideal values of 1/3, with relative deviations from their mean
of only . At the same time, this is the ultimately achiev-
able relative PMD detection accuracy. The residual degree of-

Fig. 3. Projections of the measured output polarization trace of a
single-waveplate polarization scrambler.

Fig. 4. Experimental harmonics amplitude spectra of the three normalized
Stokes’ parameters. They closely agree with theory ((6), using the upper signs).

polarization was almost zero, . The recorded
Stokes parameter spectra are shown in Fig. 4. Depicted are the
rms amplitudes of Stokes parameters measured at different mul-
tiples of . As expected, the spectra are very clean. Almost
all power is contained in the harmonics 1, 3 (both for ,

) and (for ), respectively.
In the LiNbO component differential time delays rather than

constant retardations occur. This means that the retardations
are proportional to the optical frequency. Therefore, optimum
scrambler behavior can be expected only at one wavelength. The
experimental driving voltage parameters were chosen for opti-
mized performance at 1550 nm.

Next, the optical wavelength was varied. In Fig. 5, the three
eigenvalues of are displayed as a function of wavelength on
either side of 1550 nm. Within a 4-THz optical bandwidth, the
scrambling quality is sufficient.

The dynamic performance of the tennis ball scrambler has
been assessed in a 40-Gb/s nonreturn-to-zero (NRZ) transmis-
sion setup (Fig. 6). The fundamental scrambling frequency
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Fig. 5. Eigenvalues of covariance matrix� as a function of wavelength.

Fig. 6. First-order PMD detection using tennis ball scrambler and arrival-time
detection. M � motorized endless fiber-optic polarization transformers.

was chosen to be 417 kHz. The measurement interval was
one scrambling period, 2.4 s. Polarization-maintaining fiber
(PMF) pieces were used as PMD devices under test. In order
to include any uncontrollable polarization influence, including
PDL, slow motorized polarization transformers (M) were
inserted before and after the PMF.

The measured rms arrival-time variation as a
function of DGD is given in Fig. 7. The readouts for
most favorable and unfavorable settings of the motorized
polarization transformers are given, with added error bars
of one standard deviation. Above 1 ps, the measurement
characteristics are very linear. If the highest readout without
DGD is compared with the worst-case readout with DGD, the
error intervals cease to overlap for 1.35 ps of DGD, which
may be considered to be the detection sensitivity. However,
one may as well argue that the polarization transformation
between the scrambler and the input of a PMD compensator
stay the same while first-order PMD is being mini-
mized by this PMD compensator. If this is true, one must com-
pare the readouts for zero and nonzero DGDs of a par-
ticular case (the worst). That sensitivity def-
inition showed nonoverlapping error inter-
vals for a DGD of 880 fs. The achieved sensi-
tivity, near 1 ps, depending on definition, and the short mea-
surement interval are believed to be a key for fast and ac-
curate PMD compensation. Given the fact that the ini-
tially used polarimeter was a low-speed instru-
ment, one may even hope to narrow the gap be-
tween highest and lowest PMD readouts if a high-speed po-
larimeter is used to set up the scrambler.

Fig. 7. PMD detection readout for tennis ball scrambler. Solid curves
correspond to lowest and highest readouts caused by motorized polarization
transformers. Associated � one-standard-deviation intervals are indicated
by “+”.

B. Dual-Waveplate Polarization-Independent Scrambler

System design would be eased if the scrambler operated
completely independent of its input polarization. Therefore, we
now seek that be equal to 1/3 times the identity matrix not
just for one, but for all scrambler input polarizations. A partic-
ular solution to this problem is a retarder with a retardation of

and eigenmodes that are equidistributed
on the Poincaré sphere. This can easily be verified. As an
example, one could use two electrooptic waveplates as SBCs
in the following way. The waveplates are operated with equal
retardations having a sinelike probability density function
in the interval [0; ]. Both waveplates are rotated in the same
direction at the same speed, but their eigenmode orientation
angles ( twice the azimuth angle) , differ by on the
Poincaré sphere equator. Each of these waveplates would trans-
form circular polarization into a polarization equidistributed
on the Poincaré sphere. Between the waveplates, there must
be a circular retarder with a retardation of . This can be an

physical rotation. The two electrooptic waveplates operate
inversely to each other due to the orientation angle difference
and, therefore, transform the circular retardation into an
retardation with eigenmodes equidistributed on the Poincaré
sphere, as required. We illustrate this configuration at the top
of Fig. 8. The first and second argument of the “SBC” denotes
retardation and orientation angle, respectively. The circular
retarder is denoted by “C” and its retardation as argument.

If arbitrary constant retarders are added before and/or behind
this particular retarder, the scrambling action will not be com-
promised. With such constant retarders added, the general so-
lution to the polarization-independent scrambler problem is in-
deed obtained. Here is a possible implementation: In the pre-
vious example, we add another circular retarder with a retarda-
tion of after the second electrooptic waveplate at the scram-
bler output, as shown in the middle of Fig. 8. The two circular
retarders and the second electrooptic waveplate between them
can be replaced by an electrooptic waveplate with the same re-
tardation as before but with an orientation angle that differs by

on the Poincaré sphere equator from its original value (see
Fig. 8, bottom). Therefore, it differs only by from the ori-
entation angle of the first electrooptic waveplate. We summarize
the end product of this metamorphosis:
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Fig. 8. Implementation of scramblers that operate independently of input polarization (see text).

Two concatenated waveplates are operated with equal retar-
dations having a sinelike probability distribution in the interval
[0; ]. Both waveplates are rotated in the same direction at the
same speed, but their orientation angles differ by 0.5 rad
on the Poincaré sphere equator. Retardation(s) and orientation
angle(s) have to be chosen statistically independent.

If implemented as described, the scrambler requires an infi-
nite scrambling period, which is unrealistic. In order to obtain a
finite scrambling period, we use the approximation

(10)

where the indexes 1, 2 denote the two waveplates. It was found
by a numerical optimization scheme. The eigenvalues of were
determined for all possible scrambler input polarizations, and
the parameters, whose final values show up in (10), were varied
to maximize the minimum eigenvalue found among all input
polarizations.

Experimentally, two adjacent waveplates on the same chip
were used for scrambling. Another waveplate with circular input
polarization generated a grid of 51 scrambler input polariza-
tions, fairly equidistributed on the whole Poincaré sphere. The
covariance matrix was measured, and its eigenvalues were
determined, separately for each input polarization. A histogram
of the eigenvalues is shown in Fig. 9. The minimum of the
smallest eigenvalue was 0.26. The maximum of the largest
eigenvalue was 0.35. Therefore, the achievable relative ac-
curacy of an arrival time-based PMD detector will ideally vary
by just , depending on scrambler input polarization and
principal states-of-polarization of the fiber. If a PMD compen-
sator is used, it can be expected to exhibit the same amount of
variation in its convergence speed. As long as the minimum con-
vergence speed is high enough, the variations should not matter
too much.

The scrambled Stokes parameter spectra depend on the
scrambler input polarization. The spectra of the three normal-

Fig. 9. Histograms of largest and smallest eigenvalue of 51 covariance
matrices.

Fig. 10. Harmonics amplitudes at output, averaged over all Stokes’ parameters
and input polarizations.

ized output Stokes parameters were first determined for each
input polarization. Then, their squared magnitudes, i.e., the
corresponding power spectra, were averaged over all input
polarizations and all three Stokes’ parameters, in order to
reduce the enormous amount of data. In Fig. 10, the amplitudes
of the resulting spectrum are plotted. Although there is no
direct physical significance of this plot, it is clear that there are
more harmonics as a price to pay for the advantage of being
(fairly) polarization-insensitive. A large clock recovery PLL
bandwidth must be recommended for arrival time detection of
PMD.

The wavelength dependence of the smallest and largest eigen-
value of was also assessed (Fig. 11). The scrambling quality
can be considered to be sufficient in a 4-THz bandwidth.
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Fig. 11. Smallest and largest eigenvalue of covariance matrix at all input
polarizations, as a function of wavelength.

Fig. 12. Experimental setup for DGD profile measurement.

III. DGD PROFILE MEASUREMENT

A. Jones Matrix Measurement
PMD in fibers is conveniently modeled by a concatenation of

DGD sections connected by variable mode converters. Jones or
Müller matrix measurement over optical frequency has enabled
the verification of the structure of a medium with three DGD
sections [13] and of the PMD vector and its derivative with re-
spect to optical frequency [14]. An inverse scattering algorithm
was detailed by Möller [8], generalizing early work by Harris et
al. [9]. Experimental validation seems not to have been reported
so far, nor does a PMD medium with complicated structure seem
to have been analyzed. The method would be of particular help
for nondestructive characterization of distributed PMDCs.

A pigtailed electrooptic waveplate [11] was fabricated in
X-cut, Z-propagation LiNbO . It was connected to a tunable
laser (Fig. 12) and driven to periodically generate eight polar-
ization states dispersed on the whole Poincaré sphere. These
were launched into a device under test (DUT). A polarimeter
was connected to the DUT output. The laser was swept in
10-GHz steps between 1525 nm and 1545 nm, and within this
range, it had no mode hops. The frequency-dependent 3 3
rotation matrix of the device, i.e., the lines and columns 2
to 4 of its Müller matrix, were thereby determined. Each of
the ( 8 in our case) normalized input ( ) Stokes vectors
corresponds to a certain output ( ) Stokes vector, thereby
forming a matrix. Both vector groups are arranged in
form of a matrix equation

(11)

The rotation matrix is then obtained by

(12)

Our choice of minimizes the errors introduced during po-
larization measurement in a least-square sense. Compared with
the compact method [14], with only two launched polarizations,
the multiple polarizations yield a better immunity against mea-
surement errors. Any residual nonorthogonality of is removed
by a singular value decomposition of according to

(13)

where , are orthogonal (or, more generally, unitary) matrices,
and is a diagonal matrix containing the singular values. is
then redefined as an orthogonal matrix

(14)

From this new , the frequency-dependent Jones matrix was

obtained in the form , , using

the equations

(15)

There are always two valid solutions at a specific frequency,
and . It is necessary to select the correct one. If the sign

changes between adjacent frequency points, the impulse re-
sponse will be distorted due to an introduced severe chromatic
dispersion. The correct sign is found if is as smooth as pos-
sible in the frequency domain. In a specific frequency region,
may be diagonally dominated ( ) or not ( ).
When moving in the frequency domain from one sample

to the next sample , the sign of must
be chosen so that the dominating one of the elements ,

has the lowest possible phase difference to its neighbor
, , respectively. This means that if

and hold, the sign of must
be inverted. It must also be inverted if and

hold.
The frequency-domain results were multiplied by a

window centered at 1535 nm to suppress errors introduced
by discontinuous borders. The window had its zeros at the
borders 1525 and 1545 nm. The inverse of the free spectral
range equaled 392 fs. Inverse Fourier transform resulted in
a time-dependent Jones matrix with impulse responses as
elements. Its first column is the finite-impulse response to a
horizontally polarized input pulse.

Windowing in the frequency domain introduces correlations
between neighbor samples in the time domain. The impulse re-
sponse was therefore resampled with a doubled 785-fs
period.
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B. Inverse Scattering Algorithm
After these preparatory steps, the structure is analyzed on the

basis of sections having DGDs equal to this value of 785 fs.
For a complete derivation of this layer-peeling algorithm, with a
nomenclature slightly different from ours, the reader is referred
to [8]. Here, we concentrate on implementation of the algorithm.
The complete impulse response can be written as (16), shown at
the bottom of the page.

From left to right, the product is executed with descending
index . The second expression serves to define the sequence

of impulse weight vectors , which are needed in the fol-

lowing. Just prior to the multiplication from right onto the th
mode converter matrix, the and fields undergo a DGD in
the ( )th section. Therefore, the field components of the
first sample and/or the last sample enable the determination of
the retardation and the orientation angle of the mode
converter that is present at the DUT output. However, depending
on the structure to be analyzed, one or the other of these samples
may vanish. This problem is solved, and measurement errors oc-
curring at both sides of the impulse response are best averaged
out, if we take a weighted average of the information available
at both ends of the impulse response. Suitable expressions are

(17)

Once this is known, the mode conversion effect can be re-
moved from the overall impulse response via multiplication by

a Jones matrix

which is inverse to the th-mode converter matrix. By this mul-
tiplication, the first sample of the impulse response is confined
to field component 2 ( ), and the last sample is confined to the
orthogonal field component 1 ( ). Now, a time backshift of
the samples in one field component is possible. It neutralizes a
DGD section with principal states-of-polarization (PSPs) equal
to these field components, which precedes the already-known

Fig. 13. DGD profile back-to-back. DGD sections run forward and backward
along the same path, ending at origin. The turning point is where the curved
arrow changes direction by 180 .

mode conversion. The pure time shift (without differential phase
shift) means that the DGD section exhibits a retardation between
the PSPs, which is an integer multiple of 2 at the center fre-
quency of the optical scanning range. It has been shown in [19]
that this is not a restriction. The impulse response is convolved

from left by . The time backshift results in a

new impulse response that is shorter by one sample. The process

is repeated until a single impulse re-

mains. It enables the determination of the initial mode conver-
sion specified by , , which precedes the first DGD sec-
tion. The impulse that generates the response, and all local slow
PSPs, are assumed to be the horizontal ( direction, marked by
an input arrow in Figs. 13–18), because we have started from a
Jones matrix in horizontal/vertical coordinates. Experimentally,
the inverse scattering range was chosen as 31.4 ps (40 sections).

The th-mode converter is specified by a rotation matrix in
the cartesian Stokes space [see (18), shown at the bottom of the
page]. SBA stands for Soleil–Babinet analog [19]. The rotation
matrix of a DGD section with horizontal polarization as the slow
PSP is

(19)

where stands for phase shifter. The DGD or PMD profile
of concatenated retarders is a concatenated sequence of input-

(16)

(18)
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referred PMD vectors with . The transpose ( )
of a rotation matrix is its inverse. The rotation matrix

(20)

represents all concatenated retarders preceding the retarder with
local PMD vector . For calculation of at arbitrary fre-
quencies, not only the mode converters separating the DGD sec-
tions, but also the DGD sections themselves, having highly fre-
quency-dependent retardations between the PSPs, are taken
into account.

is the normalized Stokes vector of a PSP, multiplied by
the DGD. This statement holds also for the total PMD vector

, DGD . In order to allow for a
zero length of the last, say the th, DGD section, we mark its
direction by an output arrow. Its direction is .
If it is multiplied onto the total rotation matrix , the re-
sult is obviously , and this is the local slow PSP of
the last section. Therefore, the output arrow indicates that conti-
nous-wave (CW) input polarization, which would be necessary
to excite the local slow PSP of the last section.

The inverse scattering algorithm will always succeed and
will always display a full-length DGD profile (40 sections).
At first, a back-to-back measurement without DUT was per-
formed (Fig. 13). The measured output polarization state was
almost constant over the wavelength range. The corresponding
impulse response is essentially a Dirac impulse in the center
of a 41-sample-long impulse response. Initially, measurement
noise will introduce random errors. After 20 sections, the
(meanwhile mode-converted and dispersed) Dirac impulse
components start to be used when (17) is executed. Note that
(17) deals no longer with the original impulse response at that
moment, and instead of , we have to take the index

. When this happens, a full mode conversion is sensed,
and subsequently, in the second half of the derived structure,
all previously accumulated errors are canceled. Indeed, all
PMD vectors ( rods) in Fig. 13 are canceled by oppositely
directed adjacent ones. The DGD profile travels 20 sections
forth and then another 20 sections back on the same path,
as if returning from a dead end (see inserted curved arrow).
As a consequence, one has the impression of seeing only 20
sections, which, in reality, hide the other 20 sections. The input
arrow tip and output arrow tail coincide within 100 fs, which
is a measurement error, since the true DGD was 100 fs.
Therefore, the simplified back-to-back DGD profile reduces to
a frequency-independent polarization transformation specified
by the rotation between the two arrows.

Next, the DUT (Fig. 14) was an 25-ps piece of PMF. It
yielded a straight 25.12-ps-long line (32 sections) followed by
a short dead end (2 4 sections). Concatenation of two PMF
pieces with 22 and 6 ps of DGD, respectively, and a 50%
mode conversion (45 rotation) in between them resulted in the
profile of Fig. 15. The long section and the short section, which
also contains a short dead end (2 1 section), are clearly seen.
The angle between the sections, which equals the SBA retarda-
tion, was 90 as expected. Verified results from other fiber

Fig. 14. DGD profile of one 25-ps DGD section. The � component is not
seen in this projection.

Fig. 15. DGD profile of two DGD sections (22 ps� 6 ps). The� component
is not seen in this projection.

DUTs are not available as of now. However, the next section of
the paper shows the characterization of an integrated optic DUT.

IV. DISTRIBUTED PMD COMPENSATOR IN X-CUT,
Y-PROPAGATION LiNbO

A distributed -cut, -propagation LiNbO PMD compen-
sator can substitute a number of DGD sections and a number of
concentrated polarization transformers at 40 Gb/s. A pigtailed,
distributed PMD compensator was fabricated, similar to those in
[7]. Seventy in-phase and quadrature TE-TM mode converters
were distributed along a 94-mm-long waveguide. Control volt-
ages and mediate quadra-
ture and in-phase mode conversion in the th SBA, respectively,
and can bend the DGD profile independently in two orthog-
onal directions, perpendicular to the local DGD profile direc-
tion. The SBA must be defined to contain a waveguide section
with an integer number of beat lengths. The retardation compo-
nents and may be called
quadrature and in-phase mode conversion retardations, respec-
tively, because the mode-converted wave is either in quadra-
ture or in phase with the original wave. The total retardation
and orientation angles of the SBA are and

, respectively.
The device loss was 4 dB, and the PDL was 1.1 dB. The

mode conversion efficiency is conveniently defined for the case
where either or is applied, i.e., mode conversion in
a single quadrature. The required voltage times length product
for full mode conversion, with half of the length that belonged
to the other quadrature being unused, was 375 V·mm. This im-
provement over the previously reported figure of 250 V·mm (as-
suming that only one type of mode converter electrode is there)
or 500 V·mm (when using the previously given efficiency defi-
nition) [7] was due to a thinner buffer layer. The total DGD was
about 25 ps. Without any voltages applied, the DGD profile was
similar to that of Fig. 13. With the exception of the folded dead
end, a straight line would be expected as the DGD profile, but in
reality, a gentle bend was observed. The center of the DGD pro-
file bend deviated by 1 ps from a straight line connecting start
and endpoint of the bend. Therefore, the bend was very gentle.
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Fig. 16. DGD profile of LiNbO PMDC with two full mode conversions
distributed over the whole length.

Fig. 17. DGD profile of LiNbO PMDC with 1.5 full mode conversions after
about 17 ps of DGD.

For another case, Fig. 16 shows the DGD profile bent to form
a full circle. This means that all SBAs have the same orientation
angles . The mode conversions occur between
locally - and -polarized waves in the chip. Therefore, Fig. 16
shows two full mode conversions (two bends by 180 each) in
one quadrature (i.e., all portions of the bends lie in the same
plane), and these are distributed along the whole chip. Due to
an additional polarization transformation in the input fiber of the
chip, there is a direction change between the input arrow and the
first DGD sections. A dead end with approximately 2 4 sec-
tions is also seen, because the total DGD value of the chip was
less than the inverse scattering range. In yet another example
with differently chosen voltages, the pigtail-shaped profile of
Fig. 17 was obtained. It displays 1.5 full mode conversions, but
they are concentrated at about 3/4 of the total DGD. This demon-
strates the versatility of the distributed PMD compensator.

The inverse scattering technique can be employed online
(with live data traffic) only in polarization diversity coherent
optical receivers, which enable the measurement of the impulse

Fig. 18. PMD profile for vanishing first-order PMD. Output arrows are not
shown for easier visibility.

response by correlation techniques. Here, it serves only to
characterize a PMD compensator offline.

V. SLOPE STEEPNESS DETECTION

Any highly sensitive first-order PMD detection scheme, such
as arrival-time detection, needs polarization scrambling. We
now consider this scenario, assuming that first-order PMD is
completely eliminated by a PMD compensator. This means that
the origin and endpoint of the resulting DGD profile coincide
at the carrier frequency. The DGD profile will therefore most
likely consist of a loop or a similar closed trajectory.

Fig. 18 shows such a profile, composed here of four DGD
sections with lengths of 0.25 each ( bit duration). Its three
different instantiations are taken below the carrier frequency (
one of the open loops), at the carrier frequency ( the closed
loop), and above the carrier frequency ( the other open loop).
The differences between the off-carrier frequencies and the car-
rier are . For a constant DGD of a section, the re-
tardation between the PSPs is proportional to the optical fre-
quency. Each DGD section therefore twists about its axis as a
function of optical frequency, and the following remainder of
the DGD profile is rotated about that axis. The first DGD sec-
tion stays at the same place for all frequencies, because it is
preceded only by a frequency-independent polarization trans-
formation. The calculated profile endpoint describes roughly
a parabola ( ) as a function of optical frequency. The overall
PMD vector itself starts from the coordinate origin and ends on
a point of the parabola. In this example, the overall PMD vec-
tors, i.e., the DGD profile endpoints, at the three frequencies
having offsets of , and with respect to the
carrier, are , , and

, respectively. The parabola is com-
posed of a linear motion along an abscissa (LM), which dis-
torts the signal like chromatic dispersion, and a quadratic mo-
tion along an ordinate (QM) perpendicular to LM. Fig. 19 shows
simulated eye diagrams back to back (top left) and three more
for various polarization transformations added at the input of
the medium, which is otherwise described by Fig. 18. In these
three, QM is perpendicular (top right), equal (bottom left), or
opposed (right) to the input polarization direction.

The closed-loop case is less special than it might seem: If
the DGD profile loop occupies one plane but is not closed, or if
there are only two DGD sections, such as in Fig. 15, the situation
will, in principle, be very similar to the closed-loop case. How-
ever, first-order PMD can mask most effects unless the input
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Fig. 19. Simulated eye diagrams back to back (top left), with unequal slopes
(bottom) and with unequal curvatures (all except back to back).

polarization coincides with the PSP of the overall DGD pro-
file. In the two-section case, the profile endpoint will rotate on
a circle, which can be approximated near the carrier frequency
by a parabola.

Next we discuss the effects of a DGD profile loop on the eye
diagram. These, as well as subsequent findings, were verified
based on additional simulations and calculations.

We start with the linear motion LM of the DGD profile end-
point as a function of optical frequency. The projection of LM
along the input polarization (arrow into origin) direction indi-
cates a quadratic dependence of the phase or a linear depen-
dence of the group delay on the optical frequency, i.e., a po-
larization-dependent chromatic dispersion [15], [16]. In reality,
both polarizations are subject to it independently but with dif-
ferent signs. Therefore, the magnitude of the derivative of LM
( the speed at which the DGD profile endpoint moves) mat-
ters, but its direction does not matter, as long as first-order PMD
is small enough and as fiber chromatic dispersion does not in-
troduce a further, polarization-independent quadratic-phase de-
pendence as an offset.

In general, the combination of fiber and PMD-induced chro-
matic dispersion is most easily measured by comparing positive
and negative curvatures of the detected signal. This is possible
if the received electrical signal is differentiated twice (Fig. 20,
top). Two attached one-way rectifiers yield mean 1 and 0 symbol
curvatures, with different signs. Their sum, i.e., the curvature
difference, depends linearly on the speed of LM. We have mod-
eled the rectifiers to yield the mean square of either the posi-
tive or the negative portions of the signal. This means that they
may be considered to be ideal rectifiers followed by squarers
and low-pass filters.

But what about QM? QM indicates a cubic dependence of
the phase or a quadratic dependence of the group delay on the
optical frequency, just like the so-called third-order chromatic
dispersion. Depending on the sign of that dependence, there is
an eye diagram shear where rising signal slopes are steeper than
falling signal slopes, or vice versa (see also [17] for an illumi-
nating discussion on the related issue of chromatic dispersion).
Her, this sign depends on the input polarization (or the DGD
profile loop orientation). The same kind of eye-diagram shear
was found for another DGD profile which, at the carrier fre-
quency, is shaped like a written “figure eight” (two loops with
opposite curvature) and starts at the center of the eight. As a

Fig. 20. Curvature difference (top) and slope steepness difference (bottom)
estimation of detected signal.

Fig. 21. Simulated readouts provided by eye closure (+), slope steepness
difference (o), and curvature difference (x) measurement as a function of
section length in a square-shaped DGD profile. All quantities are normalized.

function of optical frequency, that profile generates approxi-
mately no LM but only QM. In all these and in a number of
other investigated examples, it was found that it is the projec-
tion (PQM) of QM along the input polarization that determines
magnitude and sign of the slope steepness difference. In partic-
ular, if the DGD profile loop of Fig. 18 is reoriented so that
PQM vanishes, the slope difference disappears, and only the
curvature difference persists. For slope difference measurement,
one of the two differentiators simply has to be left out (Fig. 20,
bottom). The one-way rectifiers yield mean 01 and 10 symbol
transition slope steepnesses, with different signs. According to
all our simulations, their sum depends roughly linearly on PQM,
including sign.

Polarization scrambling rotates the profile and lets PQM os-
cillate because the direction of QM is modulated in the PMD
vector space. The PMD compensation algorithm, together with
the PMDC, must try to make these oscillations vanish. If the
dynamic part of the eye shear vanishes at all times, QM is zero,
there is no DGD profile loop, and the associated higher order
PMD is compensated.

In terms of traditionally defined [18] PMD orders, the linear
motion LM is a second-order effect, and it is proportional to the
square of the DGD section length. The quadratic motion QM
is a third-order effect, and is proportional to the cube of the
DGD section length. Fig. 21 shows simulated slope difference
and curvature difference readouts, in each case normalized to
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TABLE I
PROPERTIES OF DIFFERENT METHODS FOR THE DETECTION OF AN ARBITRARILY ORIENTED DGD PROFILE LOOP

the mean slope steepness or curvature, respectively. Readouts
are given as a function of the length of each of the four DGD
sections forming the DGD profile “loop.” In the limit of small
DGDs, the curvature differences are extremely small because
they rise with the cube of the DGD per section. In contrast, the
slope difference readout rises with the square of the DGD per
section and is therefore for small DGDs much larger than the
curvature difference readout. Unlike other detection criteria, the
slope steepness difference is directly proportional to the DGD
profile loop area. Surprisingly, the third-order effect QM (more
precisely, PQM) is better detectable than the second-order effect
LM. Yet, the slope difference measurement is fully sufficient be-
cause it detects the third-order PMD that is typically associated
with second-order PMD. If input polarization and LM are par-
allel, the slope difference readout vanishes, but scrambling can
ensure that this situation will not persist.

Let us look at alternative methods for detecting what occurs
in Fig. 18. An auxiliary decision circuit with a variable threshold
level, the output signal of which is compared to the output signal
of the main decision circuit in an EXOR gate, indicates the inner
eye opening. This measurement is digital. Being subject to cor-
responding strong quantization noise, it requires a long mea-
surement interval to achieve an acceptable accuracy. In addi-
tion, the inner eye opening reduces with the third power of the
DGD per section. The eye closure ( back-to-back eye opening
minus actual inner eye opening), also plotted in Fig. 21, is there-
fore extremely small for small DGDs per section. Other than
for the two aforementioned schemes, the eye-opening measure-
ment is accompanied by the back-to-back eye opening as a large
offset, which makes it difficult to reliably measure the smallest
eye closures. In particular, the eye is also being closed by power
loss, PDL, and patterning. Only a factor measurement can get
around this, but an even longer measurement interval is needed.

Instead of adding, one could as well subtract the output sig-
nals of the oppositely poled rectifiers in the bottom of Fig. 20.
This would result in a high-pass filter output power measure-
ment because the differentiator is a high-pass filter. Maximizing
this power by a suitable PMDC removes first-order PMD and
also the curvature difference distortions that occur if the nor-
malized Stokes vector of the input polarization and the plane
of the DGD profile loop are perpendicular. However, that con-
trol strategy will try to enlarge any DGD profile loop that lies
in a plane parallel to the input polarization, because the over-

shoot associated with the slope steepness differences actually
increases the power of the detected signal. The high-pass filter
output power also indicates the presence of the previously men-
tioned figure-eight DGD profile. Therefore, PMD compensation
cannot work well if it is based on high-pass filter output power
measurement alone. This control criterion tends to minimize
first- and second-order PMD but maximize third-order PMD.

There is yet another point. High-pass filter output power mea-
surement is strongly influenced by the bit pattern. Depending
on how many signal transitions occur during a measurement in-
terval, the readout may vary. For example, if there is a 101010
sequence instead of a pseudorandom binary sequence (PRBS),
the readout increases. Curvature difference readouts are also
sensitive to patterning. We tried a square-shaped DGD profile
loop with four sections of length 0.1875 and found out that
even the sign of the curvature difference was changed when we
used a 110110110 sequence, instead of a PRBS. The explana-
tion is that the 110110110 sequence avoids the single ones that
have maximum negative curvature. In contrast, slope difference
readouts are fairly little affected by patterning because there are
always as many falling slopes as there are rising slopes—with an
uncertainty of only one slope within any measurement interval.

Uncompensated fiber chromatic dispersion masks the slope
steepness difference readout because it masks the corre-
sponding PMD penalty. For 17 ps/nm, about half, and beyond

34 ps/nm essentially the whole slope steepness difference
readout vanishes, at 40 Gb/s. While it is not difficult to stay
within 17 ps/nm, one might wish to be able to tolerate
somewhat more chromatic dispersion. On the other hand, if
there is 34 ps/nm of uncompensated chromatic dispersion,
the eye opening is reduced so much that accurate detection of
higher order PMD is not important anyway.

The other previously mentioned higher order PMD detection
schemes are cross-sensitive to chromatic dispersion, including
its sign. If there is no scrambler, they can be helpful for com-
pensation of fiber chromatic dispersion by a second-order PMD
set to be parallel or antiparallel to the input polarization.

Table I summarizes, somewhat simplified, the pros and cons
of the different methods suitable for detection of what occurs
in Fig. 18. Slope steepness difference detection is an attractive
candidate. It is straightforward to also measure the high-pass
output power for inclusion into the control process, since no



SANDEL et al.: ENABLING TECHNIQUES FOR PMD COMPENSATION 1209

Fig. 22. 40 Gb/s eye diagrams (see text), comparable to those of Fig. 19.

more RF hardware is needed than for slope steepness difference
detection.

The slope steepness difference can of course also be detected
statically, without polarization scrambling, but not if this
scheme is intended to indicate the presence of a DGD profile
loop independent of its orientation.

When the distributed PMDC is set like shown in Fig. 16 at
the optical carrier frequency, it allows the verification of the pre-
dicted higher order PMD effects. Fig. 22 shows corresponding
measured 40 Gb/s eye diagrams. The top left is a back-to-back
eye diagram. The other eye diagrams were obtained with the
PMDC, for different fixed input polarizations. The top right de-
picts peaking due to maximum curvature difference. Eye shear
in either direction was also obtained (bottom). These measure-
ments confirm the simulations of Fig. 19.

VI. CONCLUSION

We have presented a “tennis ball” polarization scrambler with
a single electrooptic waveplate for circular input polarization
that generates only three harmonics of the Stokes’ parameters,
and a polarization-independent polarization scrambler with two
electrooptic waveplates. They can be used for arrival-time detec-
tion of PMD and for other PMD detection schemes that require
a polarimeter. The PMD detection sensitivity for the tennis-ball
scrambler in a 40 Gb/s NRZ transmission system was around 1
ps, using a 2.4 s measurement interval.

We have also implemented an inverse scattering algorithm for
devices with PMD. It has enabled nondestructive determination
of various differential group-delay profiles, in particular those of
a distributed PMDC in -cut, -propagation LiNbO , which is
capable of a number of mode conversions.

After compensation of first-order PMD, the DGD profile will
typically consist of a loop or a similar closed trajectory. If there
is a polarization scrambler at the transmitter, slope steepness dif-
ferences will occur reliably. These can be detected by a differen-
tiator with two subsequent, oppositely poled one-way rectifiers.

The combination of the discussed schemes and devices is ex-
pected to allow a cost-effective and powerful PMD compensa-
tion at 40 Gb/s.
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